(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
++(.(x, y), z) →+ .(x, ++(y, z))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [y / .(x, y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)
Types:
rev :: nil:. → nil:.
nil :: nil:.
++ :: nil:. → nil:. → nil:.
. :: a → nil:. → nil:.
make :: a → nil:.
hole_nil:.1_0 :: nil:.
hole_a2_0 :: a
gen_nil:.3_0 :: Nat → nil:.
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
rev,
++They will be analysed ascendingly in the following order:
++ < rev
(8) Obligation:
TRS:
Rules:
rev(
nil) →
nilrev(
rev(
x)) →
xrev(
++(
x,
y)) →
++(
rev(
y),
rev(
x))
++(
nil,
y) →
y++(
x,
nil) →
x++(
.(
x,
y),
z) →
.(
x,
++(
y,
z))
++(
x,
++(
y,
z)) →
++(
++(
x,
y),
z)
make(
x) →
.(
x,
nil)
Types:
rev :: nil:. → nil:.
nil :: nil:.
++ :: nil:. → nil:. → nil:.
. :: a → nil:. → nil:.
make :: a → nil:.
hole_nil:.1_0 :: nil:.
hole_a2_0 :: a
gen_nil:.3_0 :: Nat → nil:.
Generator Equations:
gen_nil:.3_0(0) ⇔ nil
gen_nil:.3_0(+(x, 1)) ⇔ .(hole_a2_0, gen_nil:.3_0(x))
The following defined symbols remain to be analysed:
++, rev
They will be analysed ascendingly in the following order:
++ < rev
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
++(
gen_nil:.3_0(
n5_0),
gen_nil:.3_0(
b)) →
gen_nil:.3_0(
+(
n5_0,
b)), rt ∈ Ω(1 + n5
0)
Induction Base:
++(gen_nil:.3_0(0), gen_nil:.3_0(b)) →RΩ(1)
gen_nil:.3_0(b)
Induction Step:
++(gen_nil:.3_0(+(n5_0, 1)), gen_nil:.3_0(b)) →RΩ(1)
.(hole_a2_0, ++(gen_nil:.3_0(n5_0), gen_nil:.3_0(b))) →IH
.(hole_a2_0, gen_nil:.3_0(+(b, c6_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
rev(
nil) →
nilrev(
rev(
x)) →
xrev(
++(
x,
y)) →
++(
rev(
y),
rev(
x))
++(
nil,
y) →
y++(
x,
nil) →
x++(
.(
x,
y),
z) →
.(
x,
++(
y,
z))
++(
x,
++(
y,
z)) →
++(
++(
x,
y),
z)
make(
x) →
.(
x,
nil)
Types:
rev :: nil:. → nil:.
nil :: nil:.
++ :: nil:. → nil:. → nil:.
. :: a → nil:. → nil:.
make :: a → nil:.
hole_nil:.1_0 :: nil:.
hole_a2_0 :: a
gen_nil:.3_0 :: Nat → nil:.
Lemmas:
++(gen_nil:.3_0(n5_0), gen_nil:.3_0(b)) → gen_nil:.3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_nil:.3_0(0) ⇔ nil
gen_nil:.3_0(+(x, 1)) ⇔ .(hole_a2_0, gen_nil:.3_0(x))
The following defined symbols remain to be analysed:
rev
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol rev.
(13) Obligation:
TRS:
Rules:
rev(
nil) →
nilrev(
rev(
x)) →
xrev(
++(
x,
y)) →
++(
rev(
y),
rev(
x))
++(
nil,
y) →
y++(
x,
nil) →
x++(
.(
x,
y),
z) →
.(
x,
++(
y,
z))
++(
x,
++(
y,
z)) →
++(
++(
x,
y),
z)
make(
x) →
.(
x,
nil)
Types:
rev :: nil:. → nil:.
nil :: nil:.
++ :: nil:. → nil:. → nil:.
. :: a → nil:. → nil:.
make :: a → nil:.
hole_nil:.1_0 :: nil:.
hole_a2_0 :: a
gen_nil:.3_0 :: Nat → nil:.
Lemmas:
++(gen_nil:.3_0(n5_0), gen_nil:.3_0(b)) → gen_nil:.3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_nil:.3_0(0) ⇔ nil
gen_nil:.3_0(+(x, 1)) ⇔ .(hole_a2_0, gen_nil:.3_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
++(gen_nil:.3_0(n5_0), gen_nil:.3_0(b)) → gen_nil:.3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
rev(
nil) →
nilrev(
rev(
x)) →
xrev(
++(
x,
y)) →
++(
rev(
y),
rev(
x))
++(
nil,
y) →
y++(
x,
nil) →
x++(
.(
x,
y),
z) →
.(
x,
++(
y,
z))
++(
x,
++(
y,
z)) →
++(
++(
x,
y),
z)
make(
x) →
.(
x,
nil)
Types:
rev :: nil:. → nil:.
nil :: nil:.
++ :: nil:. → nil:. → nil:.
. :: a → nil:. → nil:.
make :: a → nil:.
hole_nil:.1_0 :: nil:.
hole_a2_0 :: a
gen_nil:.3_0 :: Nat → nil:.
Lemmas:
++(gen_nil:.3_0(n5_0), gen_nil:.3_0(b)) → gen_nil:.3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_nil:.3_0(0) ⇔ nil
gen_nil:.3_0(+(x, 1)) ⇔ .(hole_a2_0, gen_nil:.3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
++(gen_nil:.3_0(n5_0), gen_nil:.3_0(b)) → gen_nil:.3_0(+(n5_0, b)), rt ∈ Ω(1 + n50)
(18) BOUNDS(n^1, INF)